

Ongoing works on CSR revision

Hyungmin CHO IACS Hull Panel Chair

Tripartite 2023

Tokyo, 10 November 2023

Tripartite 2023

A. CSR overview evolving with experience

The 'Class Cycle' with IACS Rule Development

IACS Commitments on the Improvement of Safety for BC & OT

Communication with Industry for IACS CSR

- Other industry fora on request
- via e-mail to IACS CSR Secretary or via a Class Society member of IACS.

IACS

IACS Projects – The CSR process

B. Introduction of revised Rec. 34 and future development on wave loads based on new Rec. 34

What is Rec No. 34?

- Wave data based on North Atlantic areas to be used for a safe design of ships sailing world wide
- Rec.34 Rev.1 launched 1992, revised in 2000/2001, based on Global Wave Statistics – Visual observations BMT Atlas (1986)
- Rec.34 Rev.1 has several known limitations
 - Inaccuracy of significant wave height and periods due to human eyeball observations
 - Unclear implicit routing effect due to bad weather avoidance
 - Uncertain assumption of uniform distribution of heading to the waves
- IACS questioned how can assure that the wave data in the rules are sufficient

No.34	Standard Wave Data							
June 2000) (Corr. Nov.	 This recommendation is valid for ships carrying goods at sea, excluding vessels that operate at a fixed location (for example FPSO a), specifically aiming at ships as covered by UR S11, and focusing on extreme wave loads. 							
2001)	 Wave data as described by the scatter diagram given in TABLE 1, describe the wave data of the North Atlancic as defined in FKGURE 1, covering areas 8,9,15 and 16, as defined in Global Wave Statistics/1/ with changes according to /2/. 							
	 When calculating design wave bending moments, it is recommended to use a return period of at least 20 years, corresponding to about 10⁻⁸ probability of exceedance per cycle. 							
	4. When calculating the pressure head from green seas on horizontal deck plates and hatch covers, the relative motion in the undisturbed wave at the centre line for the considered area, at a return period of 20 years, can be applied as a first approximation.							
	 Combination of loads should be performed, preferably using simultaneous values, to ensure application of the design loads at a consistent probability level. 							
	$(f_{i},f_{i}) = (f_{i},f_{i}) + (f_{i},f_{i}$							

How to update Rec. 34?

- A dedicated PT was formed by IACS in 2018 to investigate the possibility of updating IACS Rec.34 with the following scope;
 - Select an appropriate wave data source
 - Validate the wave data source
 - Get relevant ship traffic data
 - Select the most relevant geographical area when generating an IACS scatter diagram
 - Account for routing due to bad weather avoidance
 - Select appropriate wave spectrum and spreading

Wave Data Sources

- Hindcast
 - Estimation

Provider	Name	Model	Wind	Horizontal	Resolution	Time	Spectra	Use of altimeter	Date	Public
				resolution	[deg]	step				
Copernicus	Waverys	MFWAM	ECMWF	22km	0.2	3h	No	Assimilation	1993- 2020	Yes
ECMWF	ERA-INTERIM	WAM	ECMWF	111km	1	6h	Full	NA	1979- 2018	Yes
ECMWF	ERA5	WAM	ECMWF	42km	0.36(0.5)	1h	Full	Assimilation	1979- 2022	Yes
IFREMER	IOWAGA	WWIII	ECMWF CFSR	<mark>55km</mark>	0.5	3h	Partial	Calibration	1990- 2020	Yes
NOAA	NOAA	WWIII	CFSR	55km	0.5	3h	Partial	NA	1979- 2009	Yes
UTokyo-NK	TodaiWW3-NK	WWIII	CFSR	28kmx31km	0.25/0.28	1h	Full	Calibration	1994- 2018	No

- Altimeter
 - Good quality for wave height

- Observations
 - Buoys Near shore
 - Vessels Human
 - Laser Lidar

Validation of Sources

Comparison of significant wave height between altimeters and 4 hindcast datasets in North-Atlantic on the period 2000-2009

ERA5

10.0 12.5 15.0

Altimeter Hs (m)

(b) ERA5

17.5

= 8.5%

5.0 7.5

The modern hindcast datasets are • considered accurate enough compared with the measurements to be used as a basis for IACS Rec. No.34 updates, and from the various datasets studied,

IOWAGA form iFREMER was selected

Wave Scatter Diagram in Rec.34 Rev.2

- Vessels do avoid storms, and this should be considered when generating scatter diagrams for ship design
- IACS Rec.34 Rev.1 is based on visual observations from merchant vessels, routing is implicitly included.
- Ship position information together with the unbiased wave measurement is important to consider
- IACS Rec.34 Rev.2 considered the routing effect based on the available AIS data since 2013 combined with hindcast data
 - ~17 Billion recordings worldwide
 - ~5 Billion hourly recordings worldwide
 - ~100 000 distinct IMO numbers
 - ~15 000 distinct IMO numbers in North Atlantic

Wave Scatter Diagram in Rec.34 Rev.2

IACS

IACS-REC34

Buoy measurements

Hindcast numerical model

10 J	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	5.75	5.90	4.00	1.90	0.00	0.15	0.02	0.00	0.00
9.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	9.34	15.15	12.51	7.39	3.12	0.94	0.20	0.03	0.00	0.00
8.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	9.40	38.70	36.80	25.95	13.63	5.33	1.55	0.34	0.05	0.01	0.00
7.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.77	88.62	107.20	86.26	53.35	25.36	9.27	2.60	0.56	0.09	0.01	0.00
6.5	0.00	0.00	0.00	0.00	0.00	0.00	1.02	147.59	305.37	271.71	190.23	104.79	45.42	15.49	4.16	0.88	0.15	0.02	0.00
5.5	0.00	0.00	0.00	0.00	0.00	0.08	149.74	811.81	791.81	609.66	375.67	185.26	73.12	23.09	5.84	1.18	0.19	0.02	0.00
4.5	0.00	0.00	0.00	0.00	0.00	82.06	1759.81	2069.19	1715.42	1151.29	625.51	275.12		28.24	6.59	1.24	0.19	0.02	0.00
3.5	0.00	0.00	0.00	0.00	23.06	2742.51	4666.81	4100.83	2936.41	1713.38	814.68	315.65	99.66	25.64	5.38	0.92	0.13	0.01	0.00
2.5	0.00	0.00	0.00	3.38	2805.81	8517.73	7835.85	5885.37	3608.30	1805.81	737.71	246.00	66.96	14.88	2.70	0.40	0.05	0.00	0.00
1.5	0.00	0.00	0.33	2028.35	12750.81	11693.38	7215.76	3006.80	846.07	160.77	20.63	1.79	0.10	0.00	0.00	0.00	0.00	0.00	0.00
0.5	0.00	0.00	6.82	202.00	333.61	187.76	45.59	4.74	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5	16.5	17.5	18.5	19.5	20.5
										IUNIT (2	,								

Way forward

- Recalibrate local & global loads in CSR, UR S11 and UR S11A
- Linear statistical analyses (~ 4 million evaluations)
 - 1 scatter diagram
 - 2 loading conditions
 - 2 limit states
 - ~ 240 responses
 - ~ 20 EDWs
 - ~ 200 vessels
- Nonlinear statistical
 - Hull girder loads

Use the latest developments in wave load calculations tools

Preliminary Result on Hull Girder Wave Bending Moment based on Rec.34 Rev.2

Preliminary Result on Hull Girder Wave Shear Force based on Rec.34 Rev.2

Draft rule wave shear force Q_{wv} (new) based on Rec.34 Rev.2 vs. current CSR (old)

Tripartite 2023

C. Monitoring the success of corrosion work and future changes of corrosion addition in IACS CSR

IACS Hull Rules Changes -Flowchart

Corrosion analyses CSR history

Phase 1: 2004-2005 Basis for CSR-BC, CSR-OT, CSR-BC&OT

Phase 2: 2010-2012 CSR harmonization

Phase 3: 2018-2019 CSR Maintenance

Tripartite 2023

Comparison of Corrosion in Different Phases

Table 1Corrosion diminution in mm (both sides) of 90% cumulative probability,
for web frames in ballast water side tanks – Application of ESP and coating
requirements for ballast water tanks are indicated

Vessel type		Phase 1	Phase 2	Phase 3
Bulk Carrier		2.3 mm	0.82 mm	0.53 mm
Oil Tanker		1.1 mm	0.68 mm	0.50 mm
Poquiromonts	Enhanced Survey Program (ESP)	No	Yes	Yes
kequirements -	Ballast tank coating requirement	No	No	Yes

Figure 5 Corrosion diminution in mm (both sides) of 90% cumulative probability, for web frames in ballast water side tanks – Phase 1-3 for bulk carriers and oil tankers

- Corrosion in B/W tanks significantly reduced between Phase 1 and Phase 2, and the main difference is the implementation of ESP
- Comparing the results from Phase 2 & 3, a small reduction is observed, and the improved corrosion protection from the implementation of coating requirements to ballast tanks in addition to ESP contributed to the reduction in Phase 3
- Therefore, an improved inspection regime of ship structures during operation (ESP) combined with improved corrosion protection (coatings) has resulted in a large reduction in corrosion diminution in ballast tanks and contributed to improved structural safety in the latest ship design

New proposal at 98% prob. vs current CSR corrosion additions

Product MR Tanker

Major DECREASES to higlight in corrosion addi				
	CSR	New	Difference	
(—)	corrosion	corrosion	New-CSR	Ratio
Structural member	[mm]	[mm]	[mm]	New/CSR%
Side longi	3	1.5	-1.5	-50%
Inn.Bottom	4.5	2	-2.5	-56%
Bottom shell & stiffener	3	1.5	-1.5	-50%
Inn.Hull plate & stiffener	3.5	1.5	-2	-57%
Inn.Bottom longi	3.5	1.5	-2	-57%

Supramax Bulk Carrier

Major DECREASES to higlight in corrosion addi				
\bigcirc	CSR	New	Difference	
()	corrosion	corrosion	New-CSR	Ratio
Structural member	[mm]	[mm]	[mm]	New/CSR%
Deck plate above WBT	4	2.5	-1.5	-38%
T.S.T stiffeners on internal bhd FOT/WBT	4.5	2.5	-2	-44%
Side shell in C.H.	4	2	-2	-50%
Bottom and Inner Bottom stiffeners	3	1.5	-1.5	-50%
IB Side Girders plate	3	1.5	-1.5	-50%
Major INCREASES to higlight in corrosion addit	ion			
	CSR	New	Difference	
(corrosion	corrosion	New-CSR	Ratio
Structural member	[mm]	[mm]	[mm]	New/CSR%
Inner bottom	5.5	6.5	1	18%

Corrosion analysis - ongoing

- In 2020, IACS carried out comprehensive statistical analyses of corrosion data obtained from thickness measurements on Bulk Carriers and Oil Tankers over the last 20-25 years. It is found that the application of the ESP(1996) and IMO PSPC for WBT (2006) and COT (2013) has resulted in a large reduction in corrosion diminution in ballast tanks and contributed to improving structural safety
- Therefore, IACS has collected additional corrosion data for BCs & OTs to investigate the corrosion state of ships in service and is developing new corrosion additions to be used in IACS CSR as well as IACS URs
- The probability level used in the new corrosion model is more conservative than the current CSR by increasing from 90% to 98% and the corrosion addition of the inner bottom plate has increased based on the new corrosion model. Furthermore, IACS will review survey regime for steel renewal with a view to keeping robustness in terms of steel renewal
- The reduction of lightweight may give an environmental and commercial benefit, and better distribution and use of steel material will help to address the risks in a more efficient, effective and rationalized way

CSR RCP 2024

- IACS decided to skip RCP 2024 with the following reasons
 - ✓ High possibility of revisiting RCP 2024 based on the changes in RCP 2025 with new wave loads and corrosion additions
 - Concentrate on the significant amendments with comprehensive technical backgrounds and consequence assessments coming from the ongoing project teams for new wave loads and corrosion additions
- EAG 7 meeting scheduled in Jan. of 2024 will not be held, but IACS will ensure appropriate communication to industry on RCP 2025 progress throughout 2024

- IACS has initiated large projects to develop new wave loads based on Rec.34 Rev.2 and new corrosion additions as a result of improved inspection regimes and coat performance in CSR
- The basis for new wave loads and corrosion addition is more transparent, and it provides a more comprehensive and technically sound background compared to the previous CSR based on experience gained in service and benchmark data
- Detailed consequence/impact assessment of the rule changes will be delivered with the dedicated technical background in due course
- In addition to the existing mechanism of collaboration, IACS also is preparing/initiating a more proactive engagement with the industry to inform stakeholders in advance about potential CSR developments

Summary

